航空發動機是由多種類型零部件組成,可以在高溫、高壓、高轉速和不斷變換工作狀態的惡劣環境中工作的高度復雜和精密的熱力機械,追求更輕量化、更大推力、更高可靠性、更長壽命、更低油耗、更低成本是提升航空發動機性能的永恒主題,這也促使發動機結構越來越集成、設計越來越復雜。 現代航空發動機設計采用了許多新技術、新材料、新結構來滿足苛刻的性能要求,高溫和承力結構件多采用整體結構,零件結構復雜、加工精度高,表面粗糙度及表面質量要求高,其先進制造技術對相應的加工機床與裝備需求十分迫切。
目前航空發動機制造工藝過程中應用較為廣泛的復合加工技術有以下2種: (1)基于工序集中原則,以多種機械加工工藝為主的復合加工技術。例如:車削、銑削、磨削、鉆削、鏜削和絞削等工藝,其中的部分工藝可以一次性裝夾完成。 (2)特種加工方法與切削、磨削組合,去除材料工藝方式的復合。例如:激光、電火花和超聲波等特種加工方法與切削、磨削的組合。
航空發動機的渦輪盤、整體葉盤、渦輪葉片等零件的材料大多為鈦合金和鎳基高溫合金,如圖所示,由于大多是薄壁件,因此對其制造精度要求極高,對其加工刀具要求亦很高。高溫合金加工時由于其切削力大、加工硬化傾向大、切削溫度高、刀具磨損嚴重使其成為典型的難加工材料。 高溫合金家族共有的特點:導熱性差、彈性模量小、化學活性高和摩擦系數大,還具有其他高溫合金不具備的高強度、高韌性和高硬度的特點使得其歸屬于難加工材料行列。在車削過程中主要表現在切屑與前刀面接觸面積小,刀尖應力集中,切削溫度高,切屑不易折斷并且鋸齒化嚴重,刀具磨損嚴重,導致加工效率很低,工件加工表面質量較差。